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Abstract-- A dynamical system of bioeconomic model for Prey-Predator interaction in a polluted 
surrounding with constant harvesting is proposed. The paper studied the dynamics of a fishery resource 
system in an aquatic environment that consists of two zones, a free fishing zone and a reserve zone 
where fishing is strictly prohibited. To protect fishery resource from extinction and over exploitation, 
taxation and creation of reserve zones are considered as combine control strategy in the proposed 
model. Interior equilibrium point is analysed alongside its local stability using linearization method and 
Routh-Hurwitz criteria for the proposed model.  Optimal harvesting policy is formulated and solved with 
the help of Pontryagin’s maximum principle. The numerical experiments illustrated confirm the theoretical 
results of the proposed model.  
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1 INTRODUCTION 

The increasing demand for more food and 
energy due to exceedingly growing of human 
population prompts exploitation of natural 
resources such as fish, forest and other 
renewable resources. Obviously, in an open-
access fishery, the level of fishing effort expands 
or contracts accordingly as the economic rent to 
the fisherman is positive or negative. In that 
light, as fishing effort expands it translates to 
influx of more fishermen into the venture 
(fishing). This results to extensive and 
unregulated harvesting of fish resource, 
therefore, overexploitation of fish resources 
become evident. The eminent threat to fish 
resource caused by overexploitation has been a 
concern to fishery management to protect the 
ecosystem. 

Some highlighted prominent regulatory policies 
that can sufficiently control the overexploitation 
of biological resources that fishery management 
has been yearning for was stressed by [10]. The 
regulatory policies includes: Taxation, License 
fees, Lease of property rights, seasonal 

harvesting etc. In the same vein, so many 
studies included creation of reserve zones 
among other regulatory policies. Out of such 
regulatory options, taxation is considered to be 
superior because of its economic flexibility 
contended by [10]. 

The continuous struggling to protect the fish 
resources, Prey-Predator and harvesting models 
play a crucial role in bioeconomics; that is the 
management of renewable resources as 
stressed by [1]. However, [6], [11], [12], [17], and 
some other authors have discussed the Prey-
Predator system with harvesting. Similarly, other 
studies discussed the Prey-Predator system with 
harvesting and established marine reserve 
zones to protect the fish resource, such 
includes: [2]; [3]; [7]; [8]; [9]; [10]; [13]; [14]; [15]; 
[18];and [19].  

Moreover, substantial studies have discussed 
Prey-Predator system with Harvesting by 
imposing taxation as the only control strategy 
which includes: [4]; [5]; [10] and [19]. Only few 
studies discussed Prey-Predator, harvesting and 
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pollution model with reserve zones as the only 
control strategy as in [13] and [16]. 

From the literatures hitherto reviewed to the best 
of our knowledge, models considered by 
different authors considered only a control 
strategy. Moreso, authors who incooperated 
reserve zones in Prey-Predator with harvesting 
model assume Prey and Predator interaction in 
both reserve and unreserve zones. But in this 
paper, it is assumed that Prey and Predator 
interact only in unreserve zones. That 
assumption would save the biomass density of 
Prey from being decline by both harvesters and 
predators. Similarly in this paper, a model is 
proposed to combine reserve zones creation 
and taxation policy as strategies to regulate 
Prey-Predator interaction with constant 
harvesting and water pollution. The interior 
equilibrium point of system is established. The 
local stability of the interior equilibrium point of 
system using linearization and Routh-Hurwitz 
criteria for the proposed model is obtained. An 
optimal harvesting policy is also discussed using 
Pontryagin’s maximum principle and numerical 
simulations illustrated. 

2 MATERIALS AND METHODS 

Consider a Prey-Predator system consisting of 
two zones: reserve and unreserve zones where 
fishing is only allowed in the unreserve zones. 
Each zone is assumed to be homogeneous, but 
interactions between Prey and Predator is 
allowed only in the unreserve zones. It is 
assumed that both Prey and Predator 
populations are harvested in unreserve zones. It 
is also assumed that migration of Prey and 
Predator is only from reserve to unreserve 
zones. In the absence of pollution, harvesting 
and Predation; the growth of both Prey and 
Predator is assumed to be logistic. Natural death 
rate of fish population in unreserve zone is 
relatively greater than that of reserve zone. For 
simplicity, it is assumed that the growth rate of 
prey is relatively greater than that of Predator in 
unreserve zone, while both Prey and Predator to 
have equal growth rate in reserve zone. Keeping 
these in view, the dynamic of the model is 
governed by the system of equations. 
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(2) Let ( )x t , ( )y t , ( )Rx t and ( )Ry t represent 
biomass densities of the Prey and Predator 
population in the unreserve and reserve zones 
respectively at a time t . Let ( )TE t  and ( )NE t
represents the economic rent of the Prey and 
Predator population in the unreserve and 
reserve zones respectively at a time t . 1γ  and

3γ  are the intrinsic growth rate of Prey specie in 
the unreserve and reserve zones respectively. 
Similarly, 2γ  and 4γ  are the intrinsic growth rate 
of Predator specie in the unreserve and reserve 
zones respectively. 1k and 3k are the 
environmental carrying capacity for Prey specie 
in the unreserve  and reserve zones 
respectively. Also, 2k and 4k  are the 
environmental carrying capacity for Predator 
specie in the unreserve and reserve zones 
respectively. 1σ and 3σ are the natural death 
rate of Prey specie in the unreserve  and 
reserve zones respectively. Equally, 2σ and 4σ  
are the natural death rate of Predator specie in 
the unreserve and reserve zones respectively. 

1q  and 2q are Catchability coefficient for Prey 
and Predator in the unreserve  zones 
respectively. 1µ and 2µ are Stiffness parameter 

for Prey and Predator; 1d and 2d are death rate 

of Prey and Predator; 1p and 2p are constant 

price per unit biomass for Prey and Predator; 1c
and 2c  are constant cost per unit biomass for 

Prey and Predator; 1E and 2E are  the 
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harvesting effort for Prey and Predator; 1φ  and 

2φ are migration rate of Prey and Predator from 

reserve to unreserve zone respectively. 1β  is 

the maximal relative increase of Predation; 2β is 
conversion factor from Prey to Predator; A is a 
saturation constant; and τ is a tax per unit 
biomass for Prey and Predator. All the 
parameters are assumed to be positive. To 
conserve the population of Prey-Predator 
system the regulatory policy imposes tax 0τ >  
per unit biomass of prey and predator, while 

0τ < denotes the subsidies given to the 
fishermen. 

2.1 EXISTENCE OF THE INTERIOR 
EQUILIBRIUM 
The central focus of this study is to get interior 
equilibrium point of the model where all the 
biological species coexist. The interior 
equilibrium point of the model is found by 
equating the derivatives on the left hand sides of 
the system ( )1 to zero and solving the resulting 
algebraic equations simultaneously.  
The interior equilibrium point of the model is 
obtained as follows: 
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The equilibrium points P∗exist if and only if 
conditions in inequality (4) and (5) are satisfied 
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2.2 LOCAL STABILITY ANALYSIS 

Considering the local stability of the interior 
equilibrium point of the model. The variational 
matrix of the system ( )1 is obtained below: 
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Evaluating (6) at P∗ , equation (7) is obtained as 
given below: 
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The characteristic equation of the variational 
matrix J ∗  is given by 
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By the Routh-Hurwitz criterion, it follows that all 
eigenvalues of (8) have negative real parts if 
and only if (9) and (10) are satisfied. 

2 2 2 5
1 4 5 1 2 3 1 1 4 5 1 2 3 1 1( )( ) ( )m m m m m m m m m m m m m m m− − − > − +       

(9) 
3 2 2 2 3 2
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2 2 2 2
1 6 2 3 1 6 4 5 3 1 4( ) ( )m m m m m m m m m m m+ + + +                     (10) 

Hence ( )* * * * * *, , , , ,R R T NP x y x y E E  is locally 

asymptotically stable. Therefore, the following 
theorem is obtained. 

Theorem 3.1.  If equations (9) and (10) are 
satisfied, then the unique interior equilibrium 
point ( )* * * * * *, , , , ,R R T NP x y x y E E  of the system (1) is 

locally asymptotically stable. 

3 OPTIMAL HARVESTING POLICY 

In renewable resources the fundamental 
problem is overexploitation, but the purpose of 
fishery management is planning harvests and 
keeping sustainable development of ecosystem. 
Such is achieved via determining the optimal 
trade-off between present and future harvests. 
An optimal harvesting policy to maximize the 
total discounted net revenue from the harvesting 
using taxation as a control instrument is 
designed. 

In this section, the objective is to maximize the 
total discounted net revenues from the fishery 
given by 

( )
0

tJ e pqx c E dtδ∞ −= −∫  

Where δ denotes the instantaneous annual rate 
of discount. 

The objective is to determine a tax policy 
( )tτ τ= to maximize J subject to the model 

equations in (1) and the control constraint  

min maxτ τ τ< <          (11)  

Applying Pontryangin’s Maximum Principle to 
obtain the optimal equilibrium solution to this 
control problem. The Hamiltonian function is 
constructed by 
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Where: ( ); 1,...,6i t iλ =  are adjoint variables. 
Hamiltonian must be maximize for

[ ]min max( ) ,tτ τ τ∈ . Specially, min 0τ < implies that 
subsidies have the effect of increasing the rate 
of expansion of the harvesting (Zhang, Zhang & 
Bai 2012). Assuming that the control constraints 
are not binding (i.e the optimal solution does not 
occur at min( )tτ τ=  or maxτ ). The condition for a 
singular control to be optimal can be obtained by 

0H
τ

∂
=

∂
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From equations (17) and (18), we obtain 
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To obtain an optimal equilibrium solution, 
equation (19) substituted into (14) which can be 
rewritten as 

2
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Where;  
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The solution of the linear equation in (20) is 
obtained below: 
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Substituting equations (21) into (13), we 
obtained 
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obtained below: 
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Substituting equations (19) into (25), we have 

2

1( )
Bcp

qx B δ
 

− =  + 
         (26)  

Which provides an equation to the singular path 
and gives the optimal equilibrium levels of 
population

1 1 2 2( ) ( ), , , , ,R RR Rx x y y x x y y E E E Eδ δ δ δδ δ
∗ ∗ ∗ ∗ ∗ ∗= = = = = =

. Then the optimal equilibrium levels of 

harvesting effort ( )( ) ( ) 1 2, , , , ,R Rx y x y E Eδ δ δ δ δ δ and 

the optimal tax is as cp
qxδ

δ
τ = − . 

4 NUMERICAL SIMULATIONS AND RESULTS 

In this section Matlab R2010a is used to 
simulate numerical experiments with the help of 
parameter values given as  

1 0.8γ = , 2 0.65γ = , 3 0.9γ = , 4 0.9γ = , 

1 600000k = , 2 500000k = ,
3 600000k = , 4 500000k = ,

1 0.000005β = , 2 0.000003β = , 60000A = ,

1 0.2d = , 
2 0.2d = , 1 0.1µ = , 

2 0.12µ = , 1 750p = , 

2 700p = , 1 500c = , 2 500c = , 1 0.5φ = , 2 0.5φ =

, 1 0.2σ = , 2 0.2σ = , 3 0.1σ = , 4 0.1σ = , 1 1.20E = , 

2 1.50E = , 1 0.000005q = , 2 0.000012q = , 0.1τ =  

For the above set of values of parameters, when 
tax is zero (tax not impose) we note that the 
positive equilibrium ( )* * * * * *, , , , ,R R T NP x y x y E E
exists and is given by 

* 133,333x = , * 59,524y = , * 200,000Rx = , 
* 166,666.67Ry = , * 20,000,115,591TE = , 
* 66,754,772,177NE =  

Again it was observed that when tax is imposed 
on the fishermen the positive equilibrium is given 
by * 200,000x = , * 92,593y = , * 200,000Rx = ,

* 166,666.67Ry = , * 20,000,133,903TE = , 
* 6,944,475,284.9NE =  

Now plotting the dynamics of the system for the 
set of values of parameters with the help of 
Matlab R2010a. The behavior of x , y , Rx , Ry ,

TE , and NE  with respect to time t  is plotted in 
fig. 1. From this figure, we note that x , y , Rx  
and Ry increase for a very short time and then 
they decrease and finally settle down at its 
steady state. However, the economic rents TE
and NE  increase with time and attain their 
equilibrium level 
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Fig. 1. Plot of x , y , Rx , Ry , TE , and NE  

versus time t when 0τ = , 1 2 0.5φ φ= =
holding other parameter values constant 

Some other important parameters are 1φ and 2φ  
in the model. Varying these parameters tend to 
have a great impact on the biomass of the 
species in unreserved zones which are shown in 
fig. 2 and fig. 4.  Increasing the migration rate 
from reserve zones to unreserve zones 
contemporaneously increases the biomass 
densities of species in unreserved zones as in 
fig. 1 through fig. 2 and fig. 3 through fig. 4. It 
was observed from the study that increase in the 
migration rate beyond 1 2 0.7φ φ= = greatly 
affect the reserve zones. Hence, it is the optimal 
value for the migration rate as emphasized by 
[16]. 

Fig. 2. Plot of x , y , Rx , Ry , TE , and NE  

versus time t when 0τ = ,
1 2 0.7φ φ= =

holding other parameter values constant 
 

 

Fig. 3. Plot of x , y , Rx , Ry , TE , and NE  

versus time t when 250τ = ,
1 2 0.5φ φ= =

holding other parameter values constant 

Obviously, τ  is also an important parameter 
which directs the dynamics of the system; 
However, in order to visualize the effect of 
imposing tax as a control measure in fishery, the 
behavior of x , y , Rx , Ry , TE , and NE with 
respect to time t  for different values of τ are 
shown in fig. 3, fig. 5 through fig. 7. From these 
figures, it is evident that the densities of the 
resource biomass and population increase as τ  
increases, but the density of economic rent 
decreases as τ  increases. For an optimal level 
of the tax imposed on per unit of harvested 
biomass, the resource biomass, the population 
and the economic rent settle down at their 
respective optimal level. 

 

 

Fig. 4. Plot of x , y , Rx , Ry , TE , and NE  versus time t
when 250τ = , 1 2 0.7φ φ= = holding other parameter 
values constant 
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Fig. 5. Plot of x , y , Rx , Ry , TE , and NE  

versus time t when 300τ = ,
1 2 0.7φ φ= =

holding other parameter values constant 

 

 

 

Fig. 6. Plot of x , y , Rx , Ry , TE , and NE  

versus time t when 500τ = ,
1 2 0.7φ φ= =

holding other parameter values constant 

Fig. 7. Plot of x , y , Rx , Ry , TE , and NE  

versus time t when 650τ = ,
1 2 0.7φ φ= =

holding other parameter values constant 

 

5 CONCLUSIONS 

In this paper, a bioeconomic model of Prey-
Predator interaction with constant harvesting in 
polluted environment has been discussed. The 
population densities of the biomass is partitioned 
into reserve and unreserve zones where fishing 
is only allowed in an unreserve zones. The study 
focuses its attention on the combined strategy 
using taxation and creation of reserve zones as 
an optimal governing mechanisms to control 
over exploitation of the fishery resource. Interior 
equilibrium point was analysed alongside the 
local stability using Routh-Hurwitz criteria for the 
proposed model. The study revealed that the 
proposed model is locally asymptotically stable. 
An optimal harvesting policy is also discussed 
using Pontryagin’s maximum principle in the 
proposed model. 

It has been observed from the numerical 
experiments that, increase in the migration rates 
from reserve zones to unreserve zones increase 
the densities of biomass in the unreserve zones 
which is evident in fig. 1 through fig. 2 and fig. 3 
through fig. 4. Therefore, creating reserve zones 
protect the fishery resource from exploitation. As 
in the case of no taxation, even under 
continuous harvesting in the free fishing 
(unreserve) zone, the fish population may be 
maintained at an appropriate equilibrium level 
when reserve zones are created see fig. 1 and 
fig. 2. However, in the case of taxation, biomass 
densities of the fish species in both reserve and 
unreserve zones may be also sustained at an 
appropriate equilibrium level. But from fig. 4 
through fig. 7, it is known that as the rate of tax 
increases both population densities of free 
fishing and reserve zones increase while 
economic rents decrease. This scenario depicts 
real life situation. Thus, combining taxation and 
creation of reserve zones is the optimal control 
strategy in curbing the phenomena of extinction 
and over exploitation of fishery resource. 
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